Исследователи из Массачусетского технологического института создали перовскитный фотоэлектрический элемент с КПД 25,2%. Для его изготовления они использовали метод химического жидкофазного осаждения (CBD).
Долгое время казалось, что в солнечной энергетике кремнию нет альтернатив, но потом появился перовскит более дешевый материал, из которого к тому же можно делать гибкие солнечные элементы.
Перовскитовые солнечные элементы могут быть дешевле, легче и производительнее, чем традиционные панели на основе кремния. Их можно крепить на окна, неровные поверхности и даже на транспорт, что открывает совершенно новые возможности для использования энергии солнца, а их максимальная теоретическая эффективность достигает 31%.
Новая технология подразумевает образование твердых пленок из неорганических неметаллических веществ на подложках в растворе, содержащем исходные соединения. Таким способом ученые создали из диоксида олова дополнительный проводящий слой между перовскитным материалом и стандартным проводящим слоем.
Если проводящий слой соединен непосредственно с перовскитом, электроны их противоположности, называемые дырками, просто воссоединяются на месте своего образования, и ток не течет, пояснили исследователи. Когда перовскитный материал и проводящий слой разделены диоксидом олова, электроны текут через образованный им промежуточный слой, что предотвращает обратное слияние дырок и электронов.
Дополнительный проводящий слой был получен путем погружения подложки в раствор, нагретый до 90 C. Находящееся в нем исходное вещество-прекурсор медленно разлагалось с образованием диоксида олова, который осаждался на фотоэлементе.
Команда пришла к выводу, что если мы определим механизмы разложения этих прекурсоров, то сможем лучше понять, как формируются эти пленки, пояснила исследовательская группа. Мы смогли найти условия, при которых можно синтезировать слой переноса электронов с идеальными свойствами.
Как установили ученые, эффективность получаемого фотоэлемента определяется зависящим от кислотности среды составом смеси промежуточных соединений, образующихся в растворе. Помимо внедрения дополнительного проводящего слоя, достижению высокого КПД способствовало улучшение самого перовскита путем добавления к нему специальных веществ, которые не изменяют ширину запрещенной зоны.
Эффективность 25,2% была получена на маленьких экспериментальных фотоэлементах, однако исследователи заявляют, что технология потенциально может быть применена к методам, которые сейчас разрабатываются для масштабного выпуска перовскитных солнечных батарей, а это позволит значительно повысить их производительность.
Источник: news.mit.edu
Ученые из Университета науки и технологий имени короля Абдуллы (KAUST) в Саудовской Аравии разработали солнечный элемент на основе 2D/3D-перовскитного гетероперехода, который, как утверждается, сохраняет более 95% своей первоначальной эффективности после 1000 часов испытаний в условиях повышенной вл
Ученые из Университета науки и технологий имени короля Абдуллы (KAUST) в Саудовской Аравии разработали солнечный элемент на основе 2D/3D-перовскитного гетероперехода, который, как утверждается, сохраняет более 95% своей первоначальной эффективности после 1000 часов испытаний в условиях повышенной вл
Ученые из Университета науки и технологий имени короля Абдуллы (KAUST) в Саудовской Аравии разработали солнечный элемент на основе 2D/3D-перовскитного гетероперехода, который, как утверждается, сохраняет более 95% своей первоначальной эффективности после 1000 часов испытаний в условиях повышенной вл
На дороги Германии выехал 18-тонный грузовик, оснащенный солнечными панелями общей мощностью 3,5 кВт. Коммерческий автомобиль со встроенной в крышу высоковольтной фотоэлектрической системой и питанием от 800-вольтовой тяговой батареи теперь одобрен для использования на дорогах общего пользования.
Исследователи из Германии провели серию компьютерных симуляций, чтобы оценить, как фотонные кристаллы могут повысить эффективность встречно-штыревых солнечных элементов с обратным контактом на основе пассивирующего электронно-селективного покрытия из поликремния с оксидом n+-типа (POLO) на отрицательном контакте элемента и дырочно-селективного p+-перехода POLO на плюсовом контакте.
Ф
Вопросы эстетичности солнечных электростанций часто являются ключевой причиной, по которой домовладельцы отказываются от таких установок. Исследователи из Технологического института Карлсруэ (KIT) разработали способ изготовления цветных солнечных элементов