Инженеры исследовательского центра Helmholtz-Zentrum Berlin (HZB) добились эффективности 29,8% у тандемного солнечного элемента с основой из кристаллического кремния и слоем из перовскита (галогенида металла). Этот полупроводниковый материал был в центре внимания ученых HZB в течение нескольких лет, поскольку он отлично преобразует солнечный свет в электроэнергию и может хорошо сочетаться с другими полупроводниковыми технологиями.
Благодаря достижению новой эффективности немецкие исследователи побили свой собственный рекорд в 29,15% для тандемного фотоэлемента, сделанный в январе 2020 года. Затем, в декабре этого же года сотрудники Oxford PV достигли 29,52%. Но гонка за рекордной эффективностью далека от завершения, уверены ученые.
Эффективность 30% это психологический предел для этой захватывающей новой технологии. В ближайшем будущем она может произвести революцию в фотоэлектрической индустрии, - объясняет Стив Альбрехт, один из участников исследования.
В своей работе ученые сконцентрировались на оптическом улучшении кремниевой ячейки с гетеропереходом, которая составляет основу тандема. Для этого на переднюю часть было нанесено нанотекстурирование и добавлен диэлектрический задний отражатель, который направляет больше света в ячейку. Однако прежде всего, для повышения эффективности основным преимуществом является нанотекстурирование на границе между кремнием и перовскитом.
Основное внимание было уделено тому, как увеличивается плотность фототока с применением различных текстур. Даже нанотекстурирование на одной стороне улучшает поглощение света и обеспечивает более высокий ток короткого замыкания по сравнению с плоским эталоном, - говорит Йоханнес Саттер из HZB. - Примечательно, что наноструктуры также приводят к небольшому улучшению качества образования электронов и к лучшему образованию пленки из перовскитных слоев, - добавляет его коллега Филипп Токхорн.
В то время как пограничный слой между двумя тандемными элементами улучшает транспортировку носителей заряда, диэлектрический отражатель увеличивает количество света, попадающего в ячейку. Это обеспечивается за счет отражения инфракрасного света на задней стороне ячейки обратно в кремниевый поглотитель. С помощью диэлектрического отражателя, мы смогли более эффективно использовать эту часть солнечного света, что привело к увеличению фототока, - говорит Александрос Круз Бурназу, который также принимал участие в исследовании.
Ученые уже имеют представление о том, как еще больше повысить КПД фотоэлемента. Речь идет о наноструктурировании слоев поглотителя с обеих сторон. По их утверждению, это сделает 30-процентную эффективность реалистичной.
Источник: helmholtz-berlin.de
Ученые из Университета науки и технологий имени короля Абдуллы (KAUST) в Саудовской Аравии разработали солнечный элемент на основе 2D/3D-перовскитного гетероперехода, который, как утверждается, сохраняет более 95% своей первоначальной эффективности после 1000 часов испытаний в условиях повышенной вл
Ученые из Университета науки и технологий имени короля Абдуллы (KAUST) в Саудовской Аравии разработали солнечный элемент на основе 2D/3D-перовскитного гетероперехода, который, как утверждается, сохраняет более 95% своей первоначальной эффективности после 1000 часов испытаний в условиях повышенной вл
Ученые из Университета науки и технологий имени короля Абдуллы (KAUST) в Саудовской Аравии разработали солнечный элемент на основе 2D/3D-перовскитного гетероперехода, который, как утверждается, сохраняет более 95% своей первоначальной эффективности после 1000 часов испытаний в условиях повышенной вл
На дороги Германии выехал 18-тонный грузовик, оснащенный солнечными панелями общей мощностью 3,5 кВт. Коммерческий автомобиль со встроенной в крышу высоковольтной фотоэлектрической системой и питанием от 800-вольтовой тяговой батареи теперь одобрен для использования на дорогах общего пользования.
Исследователи из Германии провели серию компьютерных симуляций, чтобы оценить, как фотонные кристаллы могут повысить эффективность встречно-штыревых солнечных элементов с обратным контактом на основе пассивирующего электронно-селективного покрытия из поликремния с оксидом n+-типа (POLO) на отрицательном контакте элемента и дырочно-селективного p+-перехода POLO на плюсовом контакте.
Ф
Вопросы эстетичности солнечных электростанций часто являются ключевой причиной, по которой домовладельцы отказываются от таких установок. Исследователи из Технологического института Карлсруэ (KIT) разработали способ изготовления цветных солнечных элементов