Швейцарские федеральные лаборатории по испытаниям и исследованиям материалов (Empa) и Швейцарская высшая техническая школа Цюриха (ETH Zurich) разработали материал, работающий как люминесцентный концентратор солнечной энергии и подходящий для использования в текстильных изделиях. С его помощью можно вырабатывать электроэнергию в любом месте, где она необходима, в том числе в непосредственной близости от электронных устройств, используемых ежедневно.
Всем гаджетам периодически требуется подзарядка, поэтому они зависимы от источника питания. Но, вероятно, в будущем не придется искать стационарную розетку, чтобы восполнить запас энергии своего смартфона, планшета или ноутбука. Потому что новая разработка швейцарских ученых дает возможность получать электричество с помощью повседневной одежды.
Если нанести созданный ими полимер на ткань, она будет собирать солнечное излучение, и, следовательно, станет способна функционировать как мобильный источник энергии.
В солнечной энергетике уже применяются устройства, пригодные для преобразования непрямого или рассеянного света в электроэнергию. В их основе лежат материалы, называемые люминесцентными солнечными концентраторами (LSC). Они не вырабатывают ток самостоятельно, а собирают излучение всей площадью своей поверхности, преобразуют его и направляют путем люминесценции на обычные фотоэлементы, в которых уже производится электроэнергия.
Существующие LSC это жесткие, не пропускающие пар и влагу устройства, поэтому они не подходят для использования в одежде. Но исследовательской группе под руководством Лучано Бозеля из Лаборатории биомиметических мембран и тканей удалось разработать люминесцентный солнечный концентратор, лишенный этих недостатков.
Новый материал создан на основе амфифильной полимерной системы (APCN). Это вещество давно известно и используется промышленно при изготовлении силикон-гидрогелевых контактных линз. Такие свойства, как воздухо- и паропроницаемость, гибкость, стабильность, делают его безопасным для глаз и кожи человека.
Причина, по которой мы выбрали именно этот полимер, заключается в том, что с его помощью мы смогли объединить два несмешивающихся люминесцентных материала на наноуровне, чтобы позволить им взаимодействовать друг с другом. Конечно, существуют и другие полимеры, в которые можно интегрировать LSC, но при их применении возникает агрегация веществ, делающая производство энергии невозможным, объясняет Бозель.
Его команда при создании гибкого солнечного концентратора сотрудничала с коллегами из двух других лабораторий Empa Тонких пленок и фотоэлементов и Современных волокон. Как и жесткие LSC, новая разработка улавливает гораздо более широкий спектр света, чем обычные фотоэлементы. Такой солнечный концентратор можно носить на теле, постоянно имея при себе источник энергии. Ведь ткань, объединенная с этим материалом, остается гибкой, эластичной, пропускающей воздух и водяной пар.
Источник: empa.ch
Ученые из Университета науки и технологий имени короля Абдуллы (KAUST) в Саудовской Аравии разработали солнечный элемент на основе 2D/3D-перовскитного гетероперехода, который, как утверждается, сохраняет более 95% своей первоначальной эффективности после 1000 часов испытаний в условиях повышенной вл
Ученые из Университета науки и технологий имени короля Абдуллы (KAUST) в Саудовской Аравии разработали солнечный элемент на основе 2D/3D-перовскитного гетероперехода, который, как утверждается, сохраняет более 95% своей первоначальной эффективности после 1000 часов испытаний в условиях повышенной вл
Ученые из Университета науки и технологий имени короля Абдуллы (KAUST) в Саудовской Аравии разработали солнечный элемент на основе 2D/3D-перовскитного гетероперехода, который, как утверждается, сохраняет более 95% своей первоначальной эффективности после 1000 часов испытаний в условиях повышенной вл
На дороги Германии выехал 18-тонный грузовик, оснащенный солнечными панелями общей мощностью 3,5 кВт. Коммерческий автомобиль со встроенной в крышу высоковольтной фотоэлектрической системой и питанием от 800-вольтовой тяговой батареи теперь одобрен для использования на дорогах общего пользования.
Исследователи из Германии провели серию компьютерных симуляций, чтобы оценить, как фотонные кристаллы могут повысить эффективность встречно-штыревых солнечных элементов с обратным контактом на основе пассивирующего электронно-селективного покрытия из поликремния с оксидом n+-типа (POLO) на отрицательном контакте элемента и дырочно-селективного p+-перехода POLO на плюсовом контакте.
Ф
Вопросы эстетичности солнечных электростанций часто являются ключевой причиной, по которой домовладельцы отказываются от таких установок. Исследователи из Технологического института Карлсруэ (KIT) разработали способ изготовления цветных солнечных элементов