Швейцарские федеральные лаборатории по испытаниям и исследованиям материалов (Empa) и Швейцарская высшая техническая школа Цюриха (ETH Zurich) разработали материал, работающий как люминесцентный концентратор солнечной энергии и подходящий для использования в текстильных изделиях. С его помощью можно вырабатывать электроэнергию в любом месте, где она необходима, в том числе в непосредственной близости от электронных устройств, используемых ежедневно.
Всем гаджетам периодически требуется подзарядка, поэтому они зависимы от источника питания. Но, вероятно, в будущем не придется искать стационарную розетку, чтобы восполнить запас энергии своего смартфона, планшета или ноутбука. Потому что новая разработка швейцарских ученых дает возможность получать электричество с помощью повседневной одежды.
Если нанести созданный ими полимер на ткань, она будет собирать солнечное излучение, и, следовательно, станет способна функционировать как мобильный источник энергии.
В солнечной энергетике уже применяются устройства, пригодные для преобразования непрямого или рассеянного света в электроэнергию. В их основе лежат материалы, называемые люминесцентными солнечными концентраторами (LSC). Они не вырабатывают ток самостоятельно, а собирают излучение всей площадью своей поверхности, преобразуют его и направляют путем люминесценции на обычные фотоэлементы, в которых уже производится электроэнергия.
Существующие LSC это жесткие, не пропускающие пар и влагу устройства, поэтому они не подходят для использования в одежде. Но исследовательской группе под руководством Лучано Бозеля из Лаборатории биомиметических мембран и тканей удалось разработать люминесцентный солнечный концентратор, лишенный этих недостатков.
Новый материал создан на основе амфифильной полимерной системы (APCN). Это вещество давно известно и используется промышленно при изготовлении силикон-гидрогелевых контактных линз. Такие свойства, как воздухо- и паропроницаемость, гибкость, стабильность, делают его безопасным для глаз и кожи человека.
Причина, по которой мы выбрали именно этот полимер, заключается в том, что с его помощью мы смогли объединить два несмешивающихся люминесцентных материала на наноуровне, чтобы позволить им взаимодействовать друг с другом. Конечно, существуют и другие полимеры, в которые можно интегрировать LSC, но при их применении возникает агрегация веществ, делающая производство энергии невозможным, объясняет Бозель.
Его команда при создании гибкого солнечного концентратора сотрудничала с коллегами из двух других лабораторий Empa Тонких пленок и фотоэлементов и Современных волокон. Как и жесткие LSC, новая разработка улавливает гораздо более широкий спектр света, чем обычные фотоэлементы. Такой солнечный концентратор можно носить на теле, постоянно имея при себе источник энергии. Ведь ткань, объединенная с этим материалом, остается гибкой, эластичной, пропускающей воздух и водяной пар.
Источник: empa.ch
Передовые технологии американской компании First Solar позволили ей создать самые долговечные солнечные модули из доступных на рынке. В новой линейке тонкопленочных панелей Series 6 CuRe используются фотоэлементы, для которых скорость
Исследователи из Института систем солнечной энергетики им. Фраунгофера добились эффективности преобразования 26% для кремниевых фотоэлементов обычной конструкции, у которых токопроводящие контакты расположены на обеих сторонах ячейки: сверху и снизу. Такие модели соответствуют существующим от
Немецкий стартап Phytonics, дочерняя компания Технологического института Карлсруэ выпустил антибликовое покрытие, которое увеличивает производительность фотомодулей на 10%. Разработка технологии длилась более семи лет.
Причем исследователи не самостоятельно изобрели строение инновационного материала, а скопировали его с природного
Китайский производитель солнечных батарей JA Solar выпустил новую серию фотоэлектрических панелей DeepBlue 3.0 Light. Они подходят для установки как на жилые здания, так и на объекты коммерческой недвижимости.
Каждый модуль DeepBlue 3.0
Вторая по величине в мире горнодобывающая корпорация Rio Tinto собирается использовать установку Heliogen на своем предприятии в руднике Rio Tinto Boron Mine. Это крупнейшее в мире месторождение борных руд, находящееся в городе Борон, штат Калифорния. Пилотную систему планируется запустить в 2022 году. Она будет обеспечивать экологически чистой энергией процессы переработки полез